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Abstract. We provide some additional pairs of functions (F,G) that do not appear in our original
paper.

Recently, the authors have found that in tables 1 and 5 of their paper [1] some pairs of functions
(F,G) were missed which lead to extensions of the trivial Lie algebra AE(1, n) for nonlinear
systems of the form

λ1Ut = �U + F(U, V )

λ2Vt = �V + G(U, V ).
(1)

(Here F and G are arbitrary smooth functions, U = U(t, x), V = V (t, x) are unknown
functions of n + 1 variables t , x = (x1, . . . , xn), � is the Laplacian, and the t subscript
to the functions U and V denotes differentiation with respect to this variable.) To achieve
completeness of tables 1–5 of [1], the missing pairs of the functions (F,G) are listed in an
additional table 6 below.

Remark. All notations used in table 6 coincide with that in tables 1–5, while the functions
yk(t), k = 1, 2, form a fundamental system of solutions of the linear second-order equation

λ1λ2
d2y(t)

dt2
− (λ2β1 + λ1β20)

dy(t)

dt
+ (β1β20 − β0β10)y(t) = 0. (2)

The appropriate forms for the yk(t) depend on the coefficients of equation (2).

It should be noted that cases 2, 3 and 4 (see table 6) are natural continuations of cases 1,
2 and 3 of table 1, respectively, while cases 5, 6, and 19 represent quite new systems with the
nonlinearity UV . On the other hand, cases 7 and 9 are special subcases of the system 9 (see
table 5); similarly cases 10–12 and 20 are obtained from the systems 6 and 7 (see table 5) with
β20 = 0. Other cases listed in table 6 are also special subcases of the relevant systems from
the original paper.

Finally, we note that the coefficient α1 can vanish in the systems 3 and 9 (see table 3);
analogously one can have β2 = 0 in system 4 (see table 2).

§ Note that Dr Cherniha’s e-mail address was printed incorrectly in the original paper [1].
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Table 6. Nonlinear systems of the form (1) with non-trivial Lie algebras ( λ1 �= 0) .

Nonlinearities Restrictions Basic operators of MAI

1 F = β1U + β10V
α β2 �= 0 AE(1.n)

G = β2V α �= 0; 1; λ1/λ2 X∞
β1

= Pβ1 (t, x)∂U , Qα = αU∂U + V ∂V

2 F = β1U + β10V
λ1/λ2 λ2β1β2 �= 0 AE(1.n), X∞

β1

G = β2V β1λ
2
2 �= β2λ

2
1 Qλ = λ1U∂U + λ2V ∂V , Ga = tPa − xa

2 Qλ

3 F = β10V
λ1/λ2 λ2 �= 0 AE(1.n), X∞

1 = P1(t, x)∂U

G = 0 Qλ, Ga, D = 2tPt + xaPa − 2λ2
λ1

V ∂V

4 F = β10V
1+4/n AE(1.n), X∞

1

G = 0 λ1
λ2

= 1 + 4
n

Qλ, Ga, D = 2tPt + xaPa − In, �

5 F = β0UV + β1U λ2 = 0 AE(1.n)

+ β10U logU β0β10 �= 0 Q∞
β = T (t)(U∂U − β10

β0
∂V ) + λ1

β0
Tt (t)∂V

G = 0 G∞
a = (

∫
T (t) dt)∂a − xa

2 Q
∞
β

6 F = β0UV λ2 = 0 AE(1.n), Q∞
β ,G∞

a at β10 = 0

G = 0 D− = 2tPt + xaPa − 2V ∂V

�β = tD − t2∂t − λ1|x|2
4 U∂U + λ1n

2β0
∂V

7 F = β1(αU − V )1−α0 α0α �= 0 AE(1.n), Q∞
α = R0(x)(∂U + α∂V )

G = β2(αU − V )1−α0 α0 �= 1 D1 = 2tPt + xaPa + 2
α0
(U∂U + V ∂V )

8 F = β1U
1−α0 λ2 = 0 AE(1.n), D1, I

∞ = T (t)V ∂V

G = β2VU
−α0 α0β2 �= 0

9 F = β1 log(αU − V ) + c1 α �= 0 AE(1.n), Q∞
α , Desp = 2tPt + xaPa

G = β2 log(αU − V ) + c2 +2(U∂U + V ∂V ) +
[
2t β2−αβ1

α(λ2−λ1)

+|x|2 β2λ1−αβ1λ2
nα(λ2−λ1)

]
(∂U + α∂V )

10. F = β1 logV c2 �= 0 AE(1.n), X∞
1 , Dβ = 2tPt + xaPa

G = c2 +2(U∂U + V ∂V ) + 2β1t
λ1

∂U

11. F = β1 logV λ2 �= 0 AE(1.n), X∞
1

G = 0 Dβ, Yβ = λ1V ∂V + β1t∂U

12. F = β1 logV λ2 = 0 AE(1.n), X∞
1

G = 0 Dβ, Y
∞
β = λ1T (t)V ∂V + β1(

∫
T (t) dt)∂U

13 F = 0 AE(1.n), X∞
2 = P2(t, x)∂V

G = β0U + β20U
α β0 �= 0 D+ = 2tPt + xaPa + 2V ∂V

14 F = β1 expU λ2 = 0 AE(1.n), I∞

G = β2V expU β2 �= 0 D2 = 2tPt + xaPa − 2∂U

15 F = β1 expV λ2 = 0 AE(1.n), X∞
1 , Q1 = λ1(U∂U + ∂V )

G = β2 β2 �= 0 G1a = tPa − xa
2 Q1

16 F = β1 expV λ2 = 0 AE(1.n), Q1, X
∞
1

G = 0 G1a, D3 = 2tPt + xaPa − 2∂V

17 F = β1 λ2β1 �= 0 AE(1.n), X∞
2

G = β2 expU Q = ∂U + V ∂V
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Table 6. (Continued)

Nonlinearities Restrictions Basic operators of MAI

18 F = β1 λ2 = 0 AE(1.n), X∞
2

G = β2 expU Q∞ = T (t)(∂U + V ∂V )

19 F = β1U + β10 logV λ2β0 �= 0 AE(1.n), Yk = yk(t)(β0V ∂V

G = β0UV + β2V β10 or β20 �= 0 −β20∂U ) + dyk(t)
dt ∂U , k = 1, 2

+ β20V logV

20 F = β1U + β10 logV λ2 = 0 AE(1.n), X∞
β1

G = β2V Y∞
β1

= λ1T (t)V ∂V

β2 or β1 �= 0 +β10 exp β1t
λ1

[∫
T (t) exp(− β1t

λ1
)dt

]
∂U
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